mercredi 1 octobre 2025

« Je ne sais pas faire dans ma tête 327 + 448 »

 

Combien d'adultes se reconnaissent ?

Cette difficulté prend racine dans une erreur pédagogique majeure :

conditionner dès le début l’enfant au comptage-numérotage.

🚨 Expérience troublante : Présentons 5 jetons à un enfant qui sait « compter » jusqu’à 5 et demandons : « Combien de jetons y a-t-il ? ».

Il compte jusqu’à 5 et s’arrête « sans répondre ». 

« Alors  combien de jetons y a-t-il ? » Réponse : il « re-compte ».

Le 5 final ne désigne pas l’ensemble des 5 jetons, mais n’est que le nom-numéro 5 du denier jeton.

Étape naturelle inévitable du développement, nous dit-on.

Cependant si l’adulte répond à la place de l’enfant « TB, il y a bien 5 jetons » ou s’il insiste en disant à l’enfant qu’il n’a pas besoin de recompter, ce dernier apprend vite à répéter le dernier mot du comptage sans comprendre.

Réaction à éviter, nous disent certains, car dangereuse..

Contrairement au nombre, le numéro ne désigne pas une pluralité et ne permet aucune opération, aucun calcul : la maison n° 8 n’est pas 8 maisons, n’est pas la somme des maisons n°5 et n° 3… ni le produit du  n° 2 et du n° 4. 

Dès que le numéro usurpe la place du nombre, tout se bloque. D’où l’empêtrement dans une sorte de comptage « mécanique » et rigide, un par un, qui réussit et se voit renforcé, tant qu’on reste dans les tout petits nombres.

Bien calculer devient ensuite pour certains synonyme de compter le plus vite possible, en attendant la délivrance par la mécanique du « calcul » écrit ou, mieux encore, de la calculatrice.



L'alternative révolutionnaire :

- cessons de partir de notre point de vue d’adulte qui sous-entend l’ordinal dans son comptage et qui induit ainsi, sans le vouloir, l’enfant dans le piège du comptage-numérotage ; - introduisons-le explicitement au comptage cardinalisant et au nombre conçu comme synthèse entre l’ordinal (1er, 2e, 3e,…) et le cardinal (1, 2, 3,…).   Lors du comptage, on ne peut dire 2 (cardinal) qu’après avoir ajouté une 2e (ordinal « sous entendu ») unité

C’est possible : « Un éléphant qui se balançait » (Les Comptines de Gabriel) réalise explicitement la synthèse entre l’ordinal et le cardinal  évitant ainsi de piéger l’enfant par le comptage-numérotage. Mais pareille démarche reste trop exceptionnelle.

À  l’école de rectifier au plus vite le tir, au lieu de resserrer le piège.

L’« Initiation aux mathématiques par le bon usage des doigts », montre clairement comment y parvenir.

#ComptageNumérotage #MéthodesDoigts #PédagogieInnovante #MathématiquesEnfant